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on aspherical shell is:
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where. (8, ¢)arc the. colatitude and longitude, respectively, and R is the radius of the shell (radius of the
earth). For an clastic body in cquilibrium, we use a variational principle to solve for the minimum in
the pole.nlial energy with respect to smallnodal displacements. } or a givenclement, e, the elastic

strain cnergy is
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and using Hooke’s law (1),
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where Q°is the element volume, For a boundary traction vector t applied on the boundary of the cle-

ment, the potential encrgy of the applicd boundary stress is
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where S is the surface of the clement. Swnming (4) and (5) and minimizing the total encrgy of the

body under load with respect 10 small vatiations in £, we get the standard finite ¢lement cquation:
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defines the clement force vector. The global stiffness matrix K is assermbled fromK® and is solved for
by Gaussian intcgration. Displacement boondary conditions and fault slip data (split nodes) enter into
(8) which reduces the rank to the number of degrees of freedom. A sufficient condition for K to be

inverted is that the translation and rotation for cach eleinent are constrained so the solution = K-if
















cate that NA-Ca relative motion is partitioned as displacement along faults and as continuum deforma-
tion (including rotation) throughout thc NA-Caplate boundary zone.  Our Ic.suits arc in good agreement
with preliminary GPS results [Farina et al.,, 1995}, if we consuain the central Septentrional fault to
left-lateral strike-slip motion.,
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Figure 4b. Deng and Sykes [ 1995] based 1nodel: fault rate solution (see Figure 3b for explanation).

Figure Sa. Calais and Mercier @r Lepinay [ 1993 | based niadcl: calculated otions at the center of

cach clement (se-c Figure 3a for explanation)

Figure 5b. Calais and Mercier de L.épinay 1993 bused model: fault rate solution (see Figure 3b

for explanation).

Figure 6. Preliminary GPS site velocity vectors arid their 95% confidence cllipses withrespect to - site
TURK in the Bahamas on stable North America plate for two occupations in 1986 and 1994 from

Farinaeral. [ 1995].

Figure 7 Calais and Mercier de Lepinay [ 1993) bascd model (insct of Puerto Rico area): calculated
motions at the center of cach element (see Figure 3a for explanation).  Thisis the same solution as
Figure 5a but with the North Amcrica platc held fixed so that the continuuns velocity vectors can be

compared to Figurc 6.

Figure 8 Calais and Mercier de Lépinay{ 1993] bascd model (insct of Puci o Rico area): (a) calcu-
lated motions at the center of cach clement (see Figwe 3a for explanation).  This is the same as Fig-
urc 7 but with the added constraint that the central Septentrional fault be strike-slip. This produccs
continuum motions mom consistent with the GPS results shown in Yigwre 6. (b) fault rate solution

(scc Figure 3b for explanation).
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Figure 4a
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Figu e 8b




